Contents

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Numbers</td>
<td>1 - 53</td>
<td>Shapes</td>
<td>118 - 122</td>
</tr>
<tr>
<td>Addition</td>
<td>54 - 75</td>
<td>Money</td>
<td>123 - 127</td>
</tr>
<tr>
<td>Subtraction</td>
<td>76 - 94</td>
<td>Measurement</td>
<td>128 - 141</td>
</tr>
<tr>
<td>Repeated Addition & Multiplication</td>
<td>95 - 107</td>
<td>Fractions</td>
<td>142 - 150</td>
</tr>
<tr>
<td>Repeated Subtraction & Division</td>
<td>108 - 117</td>
<td>Time</td>
<td>151 - 158</td>
</tr>
</tbody>
</table>

Authors:
Saima Khaled (M. Ed, Education Consultant, Plan International, Chairperson, Early Years Learning Association)
Syed Tassadduq Hussain Bokhari (M. Phil, Education Consultant)

Reviewed by:
Muhammad Shakoor (Ex-Principal, Crescent Model Higher Secondary School, Lahore)
Ahid Sohail (Chairman, Mathematics Association of Pakistan)

Designing:
Studio 7
Farah Sharif
Sophia Khan

Published by:

Printed by:

All Rights reserved with the Punjab Curriculum and Textbook Board, Lahore.
No part of this book can be copied, translated, reproduced or used for preparation of test papers, guide books, key notes and help books.
Haris is counting things in his classroom.

Let’s count with him.

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>1</th>
<th>One</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Two</td>
</tr>
<tr>
<td>3</td>
<td>Three</td>
</tr>
<tr>
<td>4</td>
<td>Four</td>
</tr>
<tr>
<td>5</td>
<td>Five</td>
</tr>
<tr>
<td>6</td>
<td>Six</td>
</tr>
<tr>
<td>7</td>
<td>Seven</td>
</tr>
<tr>
<td>8</td>
<td>Eight</td>
</tr>
<tr>
<td>9</td>
<td>Nine</td>
</tr>
</tbody>
</table>

There is no tractor in the classroom. We can say there are 0 tractors.
Match the object with the correct number.

- [] 6
- [] 2
- [] 4
- [] 0

Count the objects and write the correct number.

- [] 5
- []
- []
- []
- []
Place Value

Haris counted 9 pencils.
Sana found 1 more pencil.

How many pencils do they have now?

When we have $9 + 1$ objects,
we group them together to form a bundle.

A single pencil represents a one.
A bundle of pencils represents a ten.

= 1 one

= 1 ten
We have 1 bundle and no other pencils. This means we have 1 ten and 0 ones.

\[
\begin{array}{c|c|c}
\text{Tens} & \text{Ones} \\
\hline
1 & 0 \\
\end{array}
\]

Sana finds 1 more pencil. There is 1 bundle and 1 pencil now. This means there is 1 ten and 1 one.

\[
\begin{array}{c|c|c}
\text{Tens} & \text{Ones} \\
\hline
1 & 1 \\
\end{array}
\]

Count the number of bundles and pencils. Write tens and ones.

\[
\begin{array}{c|c|c}
\text{Tens} & \text{Ones} \\
\hline
2 & 2 \\
\end{array}
\]
Haris has 10 blocks.

He combines these blocks to make a ten.

We can use blocks to learn tens and ones.

1 block = 1 one

1 group = 1 ten of ten blocks

Count the blocks. Write tens and ones.
Haris and Sana have made groups of tens with their blocks.

Count the blocks and read the number.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>ten</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>twenty</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>thirty</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>forty</td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>fifty</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>sixty</td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>seventy</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>eighty</td>
</tr>
<tr>
<td></td>
<td>90</td>
<td>ninety</td>
</tr>
</tbody>
</table>
Look at the number. Count tens and ones.

59

5 tens 9 ones

There are 5 tens. They represent 50 blocks. There are 9 ones. They represent 9 blocks.

59 = 5 tens 9 ones
59 = 50 + 9

34

3 tens 4 ones

There are 3 tens. They represent 30 blocks. There are 4 ones. They represent 4 blocks.

34 = 3 tens 4 ones
34 = 30 + 4
Write the number of tens and ones.

23 = ____ tens ____ ones

45 = ______ tens ______ ones

62 = ______ tens ______ ones

87 = ______ tens ______ ones

43 = ______ tens ______ ones

Write tens and ones.

56 = ____50____ + ____6____

31 = ______ + ______

95 = ______ + ______

20 = ______ + ______

18 = ______ + ______

8
Numbers in words

Read numbers from 10 to 29.

<table>
<thead>
<tr>
<th>Family of 10</th>
<th>Family of 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ten</td>
<td>Twenty</td>
</tr>
<tr>
<td>Eleven</td>
<td>Twenty one</td>
</tr>
<tr>
<td>Twelve</td>
<td>Twenty two</td>
</tr>
<tr>
<td>Thirteen</td>
<td>Twenty three</td>
</tr>
<tr>
<td>Fourteen</td>
<td>Twenty four</td>
</tr>
<tr>
<td>Fifteen</td>
<td>Twenty five</td>
</tr>
<tr>
<td>Sixteen</td>
<td>Twenty six</td>
</tr>
<tr>
<td>Seventeen</td>
<td>Twenty seven</td>
</tr>
<tr>
<td>Eighteen</td>
<td>Twenty eight</td>
</tr>
<tr>
<td>Nineteen</td>
<td>Twenty nine</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Family of 10</th>
<th>Family of 20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ten</td>
<td>Twenty</td>
</tr>
<tr>
<td>Eleven</td>
<td>Twenty one</td>
</tr>
<tr>
<td>Twelve</td>
<td>Twenty two</td>
</tr>
<tr>
<td>Thirteen</td>
<td>Twenty three</td>
</tr>
<tr>
<td>Fourteen</td>
<td>Twenty four</td>
</tr>
<tr>
<td>Fifteen</td>
<td>Twenty five</td>
</tr>
<tr>
<td>Sixteen</td>
<td>Twenty six</td>
</tr>
<tr>
<td>Seventeen</td>
<td>Twenty seven</td>
</tr>
<tr>
<td>Eighteen</td>
<td>Twenty eight</td>
</tr>
<tr>
<td>Nineteen</td>
<td>Twenty nine</td>
</tr>
</tbody>
</table>

Match the word with the correct number.

Twenty two 15
Thirteen 22
Fifteen 13
Read numbers from 30 to 49.

<table>
<thead>
<tr>
<th>Family of 30</th>
<th>Family of 40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thirty</td>
<td>Forty</td>
</tr>
<tr>
<td>Thirty one</td>
<td>Forty one</td>
</tr>
<tr>
<td>Thirty two</td>
<td>Forty two</td>
</tr>
<tr>
<td>Thirty three</td>
<td>Forty three</td>
</tr>
<tr>
<td>Thirty four</td>
<td>Forty four</td>
</tr>
<tr>
<td>Thirty five</td>
<td>Forty five</td>
</tr>
<tr>
<td>Thirty six</td>
<td>Forty six</td>
</tr>
<tr>
<td>Thirty seven</td>
<td>Forty seven</td>
</tr>
<tr>
<td>Thirty eight</td>
<td>Forty eight</td>
</tr>
<tr>
<td>Thirty nine</td>
<td>Forty nine</td>
</tr>
</tbody>
</table>

Match the word with the correct number.

- Thirty nine: 49
- Thirty three: 39
- Forty six: 33
- Forty nine: 46
Read numbers from 50 to 69.

<table>
<thead>
<tr>
<th>Family of 50</th>
<th>Family of 60</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fifty</td>
<td>Sixty</td>
</tr>
<tr>
<td>Fifty one</td>
<td>Sixty one</td>
</tr>
<tr>
<td>Fifty two</td>
<td>Sixty two</td>
</tr>
<tr>
<td>Fifty three</td>
<td>Sixty three</td>
</tr>
<tr>
<td>Fifty four</td>
<td>Sixty four</td>
</tr>
<tr>
<td>Fifty five</td>
<td>Sixty five</td>
</tr>
<tr>
<td>Fifty six</td>
<td>Sixty six</td>
</tr>
<tr>
<td>Fifty seven</td>
<td>Sixty seven</td>
</tr>
<tr>
<td>Fifty eight</td>
<td>Sixty eight</td>
</tr>
<tr>
<td>Fifty nine</td>
<td>Sixty nine</td>
</tr>
</tbody>
</table>

Match the word with the correct number.

Fifty eight 65
Sixty two 51
Fifty one 58
Sixty five 62
Read numbers from 70 to 89.

<table>
<thead>
<tr>
<th>Family of 70</th>
<th>Family of 80</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seventy</td>
<td>Eighty</td>
</tr>
<tr>
<td>Seventy one</td>
<td>Eighty one</td>
</tr>
<tr>
<td>Seventy two</td>
<td>Eighty two</td>
</tr>
<tr>
<td>Seventy three</td>
<td>Eighty three</td>
</tr>
<tr>
<td>Seventy four</td>
<td>Eighty four</td>
</tr>
<tr>
<td>Seventy five</td>
<td>Eighty five</td>
</tr>
<tr>
<td>Seventy six</td>
<td>Eighty six</td>
</tr>
<tr>
<td>Seventy seven</td>
<td>Eighty seven</td>
</tr>
<tr>
<td>Seventy eight</td>
<td>Eighty eight</td>
</tr>
<tr>
<td>Seventy nine</td>
<td>Eighty nine</td>
</tr>
</tbody>
</table>

Read the word and write the number.

- Seventy two 72
- Eighty four
- Seventy six
- Eighty
Read numbers from 90 to 99.

<table>
<thead>
<tr>
<th>Family of 90</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ninety</td>
</tr>
<tr>
<td>Ninety one</td>
</tr>
<tr>
<td>Ninety two</td>
</tr>
<tr>
<td>Ninety three</td>
</tr>
<tr>
<td>Ninety four</td>
</tr>
<tr>
<td>Ninety five</td>
</tr>
<tr>
<td>Ninety six</td>
</tr>
<tr>
<td>Ninety seven</td>
</tr>
<tr>
<td>Ninety eight</td>
</tr>
<tr>
<td>Ninety nine</td>
</tr>
</tbody>
</table>

Read the word and write the number.

93 _____ Ninety three _____

97 ______________________

99 ______________________

90 ______________________

95 ______________________

91 ______________________
Hundred, Tens & Ones

Hamza has 10 blocks of ten.
He joins them together.
10 blocks of ten joined together make a hundred.

10 blocks of ten = 1 hundred

One block = 1 one
Set of 10 blocks = 1 ten
Set of 10 tens = 1 hundred
Numbers till 1000

Count and write hundreds, tens and ones.

<table>
<thead>
<tr>
<th>Hundreds</th>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Count and write hundreds, tens and ones.

<table>
<thead>
<tr>
<th></th>
<th>Hundreds</th>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Did you notice? There were 10 hundreds in the last row.

What happens when we have 10 hundreds? We join them to form one big block. This big block represents 1 thousand.

10 hundreds = 1 thousand
100 is the smallest 3-digit number
1000 is the smallest 4-digit number
Look at the given example.

124 = 1 hundred 2 tens 4 ones

Read the number. Write hundreds, tens and ones.

354 = ___ hundreds ___ tens ___ ones

247 = ___ hundreds ___ tens ___ ones

536 = ___ hundreds ___ tens ___ ones

260 = ___ hundreds ___ tens ___ ones

680 = ___ hundreds ___ tens ___ ones

473 = ___ hundreds ___ tens ___ ones
Look at the given example.

1 hundred 3 tens 5 ones = 135

Read hundreds, tens and ones. Write the number.

8 hundreds 5 tens 3 ones = 853
7 hundreds 6 tens 1 one = ___
3 hundreds 1 tens 7 ones = ___
8 hundreds 4 tens 2 ones = ___
9 hundreds 2 tens 5 ones = ___
6 hundreds 2 tens 9 ones = ___
Look at the given number.

\[169 \]

1 hundred 6 tens 9 ones

There is 1 hundred. It represents 100 blocks. There are 6 tens. They represent 60 blocks. There are 9 ones. They represent 9 blocks.

\[169 = 100 + 60 + 9 \]

For the following numbers, write hundreds, tens and ones.

526 = \underline{500} + \underline{20} + \underline{6}

319 = \underline{300} + \underline{10} + \underline{9}

953 = \underline{900} + \underline{50} + \underline{3}

278 = \underline{200} + \underline{70} + \underline{8}

862 = \underline{800} + \underline{60} + \underline{2}
Missing numbers

Read the number sequence from 100-199

<table>
<thead>
<tr>
<th></th>
<th>100</th>
<th>110</th>
<th>120</th>
<th>130</th>
<th>140</th>
<th>150</th>
<th>160</th>
<th>170</th>
<th>180</th>
<th>190</th>
</tr>
</thead>
<tbody>
<tr>
<td>101</td>
<td>111</td>
<td>121</td>
<td>131</td>
<td>141</td>
<td>151</td>
<td>161</td>
<td>171</td>
<td>181</td>
<td>191</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>112</td>
<td>122</td>
<td>132</td>
<td>142</td>
<td>152</td>
<td>162</td>
<td>172</td>
<td>182</td>
<td>192</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>113</td>
<td>123</td>
<td>133</td>
<td>143</td>
<td>153</td>
<td>163</td>
<td>173</td>
<td>183</td>
<td>193</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>114</td>
<td>124</td>
<td>134</td>
<td>144</td>
<td>154</td>
<td>164</td>
<td>174</td>
<td>184</td>
<td>194</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>115</td>
<td>125</td>
<td>135</td>
<td>145</td>
<td>155</td>
<td>165</td>
<td>175</td>
<td>185</td>
<td>195</td>
<td></td>
</tr>
<tr>
<td>106</td>
<td>116</td>
<td>126</td>
<td>136</td>
<td>146</td>
<td>156</td>
<td>166</td>
<td>176</td>
<td>186</td>
<td>196</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>117</td>
<td>127</td>
<td>137</td>
<td>147</td>
<td>157</td>
<td>167</td>
<td>177</td>
<td>187</td>
<td>197</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>118</td>
<td>128</td>
<td>138</td>
<td>148</td>
<td>158</td>
<td>168</td>
<td>178</td>
<td>188</td>
<td>198</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>119</td>
<td>129</td>
<td>139</td>
<td>149</td>
<td>159</td>
<td>169</td>
<td>179</td>
<td>189</td>
<td>199</td>
<td></td>
</tr>
</tbody>
</table>

Use the chart and circle the number that comes:
- just after 121
- just before 180
- at the end

Complete the sequence.

141, 142, 143, ____, ____, ____

171, ____, ____, 174, ____, ____

150, 151, ____, ____, 154, ____

192, 193, ____, ____, 196, ____
Complete the number sequence from 200-299

<table>
<thead>
<tr>
<th>200</th>
<th>210</th>
<th>220</th>
<th>230</th>
<th>240</th>
<th>250</th>
<th>260</th>
<th>270</th>
<th>280</th>
<th>290</th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td>211</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>202</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>252</td>
<td></td>
</tr>
<tr>
<td>203</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>204</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>205</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>206</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>236</td>
<td></td>
<td></td>
</tr>
<tr>
<td>207</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>277</td>
<td></td>
</tr>
<tr>
<td>208</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>209</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>299</td>
</tr>
</tbody>
</table>

The sequence of numbers after 100 remains the same.
999 is the greatest 3-digit number.

Complete the sequence.

<table>
<thead>
<tr>
<th>450 to 479</th>
</tr>
</thead>
<tbody>
<tr>
<td>450</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>453</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>300 to 329</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>302</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>
Complete the sequence.

510, 511, 512, ___, ___, ___, ___

430, 431, ___, ___, 434, ___, ___

638, ___, 640, ___, ___, ___, ___

898, 899, ___, ___, 902, ___, ___

950, 951, ___, ___, ___, ___, 956

Look at the numbers given below.

210 48 900 550 101

Which number comes between 100 and 102?

Which number comes between 549 and 551?

Which number comes just after 899?

Which number is less than 100?

Which number comes just before 211?
Write the number that comes before each number.

_____ 22 _____ 13 _____ 69

_____ 450 _____ 600 _____ 378

_____ 125 _____ 201 _____ 346

Write the number that comes after each number.

45 _____ 56 _____ 99 _____

98 _____ 479 _____ 562 _____

285 _____ 970 _____ 682 _____

Write the number that comes between the given numbers.

41 _____ 43 17 _____ 19

199 _____ 201 376 _____ 378

881 _____ 883 53 _____ 55
Counting Backwards

Ali is jumping on the number line by counting backwards.

Ali starts from 9.
He counts back 1 and jumps to 8.
He then counts back 1 more and jumps to 7.

Count backwards and complete the given sequences.

8 7 6 5 ____ ____

9 8 ____ ____ 5 ____

6 ____ 4 3 ____ ____

7 6 ____ ____ 3 ____
Count backwards and complete the given sequences.

<table>
<thead>
<tr>
<th>56</th>
<th>55</th>
<th>54</th>
<th></th>
<th>52</th>
</tr>
</thead>
<tbody>
<tr>
<td>20</td>
<td>19</td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>45</td>
<td></td>
<td></td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td></td>
<td></td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td></td>
<td></td>
<td>77</td>
<td></td>
</tr>
<tr>
<td>564</td>
<td>563</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>199</td>
<td>198</td>
<td></td>
<td></td>
<td>195</td>
</tr>
<tr>
<td>400</td>
<td></td>
<td>398</td>
<td></td>
<td>396</td>
</tr>
<tr>
<td>173</td>
<td>172</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>529</td>
<td></td>
<td></td>
<td></td>
<td>525</td>
</tr>
<tr>
<td>382</td>
<td>381</td>
<td></td>
<td>379</td>
<td></td>
</tr>
</tbody>
</table>
Skip Counting by 10

Ali skips over 10 steps to go to 20, then another 10 steps to go to 30.

This is called skip counting by 10s.

We can count quickly by making sets of 10.

There are 3 sets of ten. This means there are 30 stars.

There are 2 sets of ten. This means there are 20 sweets.
Count in 10s and write the number.
Skip Counting by 100

We can also count quickly by skipping in 100s.

<table>
<thead>
<tr>
<th></th>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>120</td>
<td>130</td>
<td>140</td>
<td>150</td>
<td>160</td>
<td>170</td>
<td>180</td>
<td>190</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>210</td>
<td>220</td>
<td>230</td>
<td>240</td>
<td>250</td>
<td>260</td>
<td>270</td>
<td>280</td>
<td>290</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>310</td>
<td>320</td>
<td>330</td>
<td>340</td>
<td>350</td>
<td>360</td>
<td>370</td>
<td>380</td>
<td>390</td>
<td>400</td>
<td></td>
</tr>
<tr>
<td>410</td>
<td>420</td>
<td>430</td>
<td>440</td>
<td>450</td>
<td>460</td>
<td>470</td>
<td>480</td>
<td>490</td>
<td>500</td>
<td></td>
</tr>
<tr>
<td>510</td>
<td>520</td>
<td>530</td>
<td>540</td>
<td>550</td>
<td>560</td>
<td>570</td>
<td>580</td>
<td>590</td>
<td>600</td>
<td></td>
</tr>
<tr>
<td>610</td>
<td>620</td>
<td>630</td>
<td>640</td>
<td>650</td>
<td>660</td>
<td>670</td>
<td>680</td>
<td>690</td>
<td>700</td>
<td></td>
</tr>
<tr>
<td>710</td>
<td>720</td>
<td>730</td>
<td>740</td>
<td>750</td>
<td>760</td>
<td>770</td>
<td>780</td>
<td>790</td>
<td>800</td>
<td></td>
</tr>
<tr>
<td>810</td>
<td>820</td>
<td>830</td>
<td>840</td>
<td>850</td>
<td>860</td>
<td>870</td>
<td>880</td>
<td>890</td>
<td>900</td>
<td></td>
</tr>
<tr>
<td>910</td>
<td>920</td>
<td>930</td>
<td>940</td>
<td>950</td>
<td>960</td>
<td>970</td>
<td>980</td>
<td>990</td>
<td>1000</td>
<td></td>
</tr>
</tbody>
</table>

There are 5 notes of Rs. 100.

Count in 100s. There are Rs. 500 in total.
Count in 100s and write the total number of blocks.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Count in 100s and complete the sequence.

100, 200, 300, 400, 500, 600, 700, 600
Comparing Numbers

Encircle the box with the greater number of objects.
Anum has 8 balls. Ali has 3 balls. Who has more balls?

8 is bigger than 3 so Anum has more balls.

Encircle the bigger number.

<table>
<thead>
<tr>
<th>8</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
</tr>
<tr>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Ali has 5 sweets. Anum has 9 sweets. Who has less sweets?

5 is smaller than 9 so Ali has less sweets.

Encircle the smaller number.

<p>| | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>7</td>
<td>3</td>
<td>2</td>
<td>9</td>
<td>2</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td>4</td>
<td>9</td>
<td>0</td>
<td>6</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>5</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Let's look at some other examples.

There are 3 children.
There are 3 balls.

There are 4 children.
There are 3 balls.

The number of children is more than the number of balls.
Look at this example.

3
4
6
7

4 is 1 more than 3
7 is 1 more than 6

1 What is 1 more than 5?

_____ is 1 more than 5.

2 What is 1 more than 4?

_____ is 1 more than 4.

3 What is 1 more than 8?

_____ is 1 more than 8.
Look at this example.

3

2

6

5

1 is 1 less than 3.

5 is 1 less than 6.

1 What is 1 less than 4?

3 is 1 less than 4.

2 What is 1 less than 5?

_____ is 1 less than 5.

3 What is 1 less than 7?

_____ is 1 less than 7.
Which is the smaller number?

30 50

1. Compare tens.

3 tens are less than 5 tens. 30 is the smaller number.

Encircle the smaller number.
Which is the bigger number?

41 25

Compare tens.

4 tens are more than 2 tens.
41 is the bigger number.

Encircle the bigger number.

10 50 35 18 42 27
63 94 47 32 53 64
32 43 16 26 28 92
54 31 12 29 21 65
Which is the bigger number?

24 27

Step 1 Compare tens.

2 4

2 7

The tens are the same.

Step 2 Compare ones.

7 ones are more than 4 ones.
27 is the bigger number.

Encircle the bigger number.

49 86 25 81 93 98

18 10 27 34 65 62

19 30 44 64 78 76
Which is the bigger number?

100 300

1) Compare hundreds.

<table>
<thead>
<tr>
<th>Hundreds</th>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hundreds</th>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3 hundreds are more than 1 hundred. 300 is the bigger number.

Which is the bigger number?

230 150

2) Compare hundreds.

<table>
<thead>
<tr>
<th>Hundreds</th>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Hundreds</th>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2 hundreds are more than 1 hundred. 230 is the bigger number.

Note:
3 tens are less than 5 tens. 230 is larger because we start by comparing hundreds.
Encircle the bigger number.

<table>
<thead>
<tr>
<th>500</th>
<th>700</th>
<th>200</th>
<th>300</th>
<th>600</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>850</td>
<td>793</td>
<td>284</td>
<td>690</td>
<td>376</td>
<td>510</td>
</tr>
<tr>
<td>283</td>
<td>561</td>
<td>920</td>
<td>340</td>
<td>800</td>
<td>380</td>
</tr>
<tr>
<td>650</td>
<td>710</td>
<td>461</td>
<td>290</td>
<td>400</td>
<td>640</td>
</tr>
<tr>
<td>392</td>
<td>600</td>
<td>548</td>
<td>861</td>
<td>350</td>
<td>280</td>
</tr>
<tr>
<td>875</td>
<td>410</td>
<td>834</td>
<td>675</td>
<td>780</td>
<td>190</td>
</tr>
<tr>
<td>341</td>
<td>900</td>
<td>863</td>
<td>541</td>
<td>400</td>
<td>381</td>
</tr>
</tbody>
</table>
Which is the smaller number?

340 320

1. Compare hundreds.
The hundreds are the same.

2. Compare tens.
2 tens are less than 4 tens. 320 is the smaller number.

Which is the smaller number?

729 723

1. Compare hundreds.
The hundreds are the same.

2. Compare tens.
The tens are also same.

3. Compare ones.
3 ones are less than 9 ones. 723 is the smaller number.
Encircle the smaller number.

<table>
<thead>
<tr>
<th>387</th>
<th>362</th>
<th>412</th>
<th>459</th>
<th>542</th>
<th>547</th>
</tr>
</thead>
<tbody>
<tr>
<td>680</td>
<td>627</td>
<td>436</td>
<td>483</td>
<td>201</td>
<td>208</td>
</tr>
<tr>
<td>670</td>
<td>675</td>
<td>987</td>
<td>971</td>
<td>465</td>
<td>432</td>
</tr>
<tr>
<td>549</td>
<td>590</td>
<td>816</td>
<td>807</td>
<td>918</td>
<td>927</td>
</tr>
<tr>
<td>675</td>
<td>601</td>
<td>300</td>
<td>386</td>
<td>750</td>
<td>792</td>
</tr>
<tr>
<td>612</td>
<td>261</td>
<td>187</td>
<td>182</td>
<td>403</td>
<td>423</td>
</tr>
<tr>
<td>536</td>
<td>522</td>
<td>207</td>
<td>218</td>
<td>380</td>
<td>381</td>
</tr>
</tbody>
</table>
Which is the biggest number?

6 5 8

8 is the biggest number.

Which is the biggest number?

57 36 45

1° Compare tens.
5 tens are more than 3 tens and 4 tens.
57 is the biggest number.

Encircle the biggest number.

66 34 21
31 18 54
43 56 92

78 24 90
65 12 39
23 74 45
Which is the smallest number?

18 12 15

1. Compare tens.
The tens are the same.

2. Compare ones.
2 ones are less than 8 ones and 5 ones.
12 is the smallest number.

Encircle the smallest number.

[Boxes with numbers: 4 8 9; 3 5 1; 13 38 94; 66 86 56; 39 15 48; 50 24 10; 36 49 58; 48 23 58; 18 27 33; 40 42 38]
Ascending and Descending Order

Arrange these numbers from the smallest to the biggest.

20 50 10

Step 1 Encircle the **smallest** number.

20 50 (10)

Step 2 Encircle the **biggest** number.

20 (50) 10

Step 3 Write the smallest number first and the biggest number at the end.

10 20 50

smallest → biggest

Arrange the given numbers from the smallest to the biggest.

5 3 8 3 5 8

36 74 43

15 89 12

38 43 16
Arrange these numbers from the biggest to the smallest.

47 53 18

1. Encircle the smallest number.
 47 53 18

2. Encircle the biggest number.
 47 53 18

3. Write the biggest number first and the smallest number at the end.
 53 47 18

Arrange the given numbers from the biggest to the smallest.

6 4 9
43 55 82
61 78 97
56 85 26
18 34 58

9 6 4
9 6 4
Arrange these numbers from the smallest to the biggest.

241 160 396

1. Encircle the smallest number.
 241 (160) 396

2. Encircle the biggest number.
 241 160 (396)

3. Write the smallest number first and the biggest number at the end.
 160 241 396

Arrange the numbers from the smallest to the biggest.

115 866 230 115 230 866

481 500 360

790 860 120

221 873 120

700 650 547 48
Arrange these numbers from the biggest to the smallest.

472 800 915

1. Encircle the smallest number.
 (472) 800 915

2. Encircle the biggest number.
 472 800 (915)

3. Write the biggest number first and the smallest number at the end.
 915 800 472
 biggest → smallest

Arrange the numbers from the biggest to the smallest.

261 345 800 800 345 261

552 128 470

389 965 890

745 630 905

208 431 580

49
1\(^{st}\), 2\(^{nd}\), 3\(^{rd}\) are called ordinal numbers.

Ordinal numbers tell us the position of the object.
We can also write them as first, second, third.

Look at the things on the table.

Start from left.
1\(^{st}\) Bag 2\(^{nd}\) Football 3\(^{rd}\) Pencil box
Class 2 students are standing in the assembly. Their names and positions are given.

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th
Nazia Ahmed Anum Arif Anwar Sana Amna Ali Haris Bilal

What are the positions of these children?

Nazia Anum Ali Bilal

Look at the positions and write the names of the children.

2nd

4th

5th

6th

8th
Ordinal Numbers

Start from left. Colour the 1st, 3rd, and 7th apple.

Start from left. Colour the 2nd, 4th, and 8th banana.

Start from left. Colour the 5th, 6th, and 9th pencil.

Start from left. Colour the 1st, 3rd, and 5th balloon.
Start from left. Write the ordinal position of blue triangles.

2\text{nd} ______ ______ ______ ______

Start from left. Write the ordinal position of yellow bananas.

4\text{th} ______ ______ ______ ______

Look at the picture.

Start from left and fill in the blank.

1\text{st} ______ 2\text{nd} ______ 3\text{rd} ______
Ahmed and Zara are playing with toys. They want to know the total number of toys.

Can you help them to add the toys?

1. $5 + 1 = ___$
2. $7 + 2 = ___$
3. $3 + 4 = ___$
4. $4 + 1 = ___$
5. $3 + 2 = ___$
6. $2 + 2 = ___$
Addition of tens and ones

Find the sum of 24 and 3.

\[
\begin{array}{c}
\text{Tens} \\
2 \\
+ \\
3 \\
\hline \\
\end{array}
\begin{array}{c}
\text{Ones} \\
4 \\
\hline \\
7 \\
\end{array}
\]

Step 1: Add ones.

\[
\begin{array}{c}
\text{Tens} \\
2 \\
+ \\
3 \\
\hline \\
\end{array}
\begin{array}{c}
\text{Ones} \\
4 \\
\hline \\
7 \\
\end{array}
\]

Step 2: Add tens.

\[
\begin{array}{c}
\text{Tens} \\
2 \\
+ \\
3 \\
\hline \\
\end{array}
\begin{array}{c}
\text{Ones} \\
4 \\
\hline \\
7 \\
\end{array}
\]

Find the sum of 27 and 12.

\[
\begin{array}{c}
\text{Tens} \\
2 \\
+ \\
1 \\
\hline \\
\end{array}
\begin{array}{c}
\text{Ones} \\
7 \\
\hline \\
2 \\
\end{array}
\]

\[
\begin{array}{c}
\text{Tens} \\
\hline \\
3 \\
\end{array}
\begin{array}{c}
\text{Ones} \\
9 \\
\hline \\
\end{array}
\]

55
Add the following numbers.

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>+</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>+</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>+</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>+</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>+</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>+</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>+</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>+</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>+</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>+</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>+</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>+</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Add the following numbers.

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
<th>Tens</th>
<th>Ones</th>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>+1</td>
<td>2</td>
<td>+2</td>
<td>4</td>
<td>+2</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>+5</td>
<td>0</td>
<td>+1</td>
<td>1</td>
<td>+3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>+2</td>
<td>2</td>
<td>+6</td>
<td>3</td>
<td>+5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td>7</td>
<td>5</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>+3</td>
<td>2</td>
<td>+1</td>
<td>1</td>
<td>+1</td>
<td>2</td>
</tr>
</tbody>
</table>
Addition with carrying

Ahmed has 8 blocks. He finds 4 more under the table. How many blocks does he have now?

Step 1:
Add ones.

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>+ 4</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

8 ones + 4 ones = 12 ones
12 ones = 1 ten 2 ones
Write 1 in the tens column and 2 in the ones column.

Find the sum of 9 and 5.

Step 1:
Add ones.

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>+ 5</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

9 ones + 5 ones = 14 ones
14 ones = 1 ten 4 ones
Write 1 in the tens column and 4 in the ones column.
Add the following numbers.

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>+ 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>9</td>
</tr>
<tr>
<td>+ 9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>+ 5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>+ 7</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>+ 3</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>+ 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>+ 4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>+ 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>+ 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>+ 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>+ 8</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Find the sum of 15 and 7.

Step 1: Add ones.

5 ones + 7 ones = 12 ones
12 ones = 1 ten 2 ones
We will write 2 in the ones column and carry 1 to the tens side.

Step 2: Add tens.
Add the following numbers.

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
<th>Tens</th>
<th>Ones</th>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>3</td>
<td>3</td>
<td>7</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>5</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>1</td>
<td>4</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Find the sum of 29 and 16.

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>+</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

Step 1:
Add ones.

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>+</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

9 ones + 6 ones = 15 ones
15 ones = 1 ten 5 ones
We will write 5 in the ones column and carry 1 to the tens side.

Step 2:
Add tens.

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>+</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>
Add the following numbers.

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>7</td>
</tr>
<tr>
<td>+</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>+</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>+</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>+</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td>+</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>+</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>+</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>+</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>9</td>
</tr>
<tr>
<td>+</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>+</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>+</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>+</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>
Addition of hundreds, tens and units

Find the sum of 243 and 24.

Step 1:
Add ones.

<table>
<thead>
<tr>
<th>H</th>
<th>T</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>
+ 2 4

 7

Step 2:
Add tens.

<table>
<thead>
<tr>
<th>H</th>
<th>T</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>
+ 2 4

 6 7

Step 3:
Add hundreds

<table>
<thead>
<tr>
<th>H</th>
<th>T</th>
<th>O</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>
+ 2 4

 2 6 7
Add the following numbers. Remember that \(H \) stands for hundreds, \(T \) for tens and \(O \) for ones.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(H)</td>
<td>(T)</td>
<td>(O)</td>
</tr>
<tr>
<td>9</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td>+</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(H)</td>
<td>(T)</td>
<td>(O)</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>8</td>
</tr>
<tr>
<td>+</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(H)</td>
<td>(T)</td>
<td>(O)</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>+</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(H)</td>
<td>(T)</td>
<td>(O)</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>+</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(H)</td>
<td>(T)</td>
<td>(O)</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>+</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(H)</td>
<td>(T)</td>
<td>(O)</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>+</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(H)</td>
<td>(T)</td>
<td>(O)</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>+</td>
<td>6</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(H)</td>
<td>(T)</td>
<td>(O)</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td>+</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(H)</td>
<td>(T)</td>
<td>(O)</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>+</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(H)</td>
<td>(T)</td>
<td>(O)</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>+</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(H)</td>
<td>(T)</td>
<td>(O)</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>+</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>(H)</td>
<td>(T)</td>
<td>(O)</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td>+</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Find the sum of 87 and 62.

\[
\begin{array}{ccc}
H & T & O \\
8 & 7 \\
+ & 6 & 2 \\
\hline
& & 9 \\
\end{array}
\]

Step 1:
Add ones.

\[
\begin{array}{ccc}
H & T & O \\
8 & 7 \\
+ & 6 & 2 \\
\hline
& & 9 \\
\end{array}
\]

Step 2:
Add tens.

8 tens + 6 tens = 14 tens
14 tens = 1 hundred 4 tens
We will write 4 in the tens column and 1 in the hundreds column.

\[
\begin{array}{ccc}
H & T & O \\
8 & 7 \\
+ & 6 & 2 \\
\hline
1 & 4 & 9 \\
\end{array}
\]
Add the following numbers. Remember that H stands for hundreds, T for tens and O for ones.

<p>| | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>T</td>
<td>O</td>
<td></td>
<td>H</td>
<td>T</td>
<td>O</td>
<td></td>
<td>H</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td></td>
<td>+</td>
<td>5</td>
<td>2</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td></td>
<td>+</td>
<td>3</td>
<td>5</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>1</td>
<td></td>
<td>+</td>
<td>8</td>
<td>5</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td></td>
<td>+</td>
<td>9</td>
<td>1</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

67
Add 142 and 87.

```
H  T  O
1  4  2
+  8  7
-----
    9
```

Step 1:
Add ones.

```
H  T  O
1  4  2
+  8  7
-----
    9
```

Step 2:
Add tens.

```
H  T  O
3  4  2
+  8  7
-----
  2  9
```

Step 3:
Add hundreds

```
H  T  O
1  4  2
+  8  7
-----
  2 2 9
```

4 tens + 8 tens = 12 tens
12 tens = 1 hundred 2 tens
We will write 2 in the

tens column and carry 1
to the hundreds
column
Add the following numbers. Remember that H stands for hundreds, T for tens and O for ones.

\[
\begin{array}{ccc}
\text{H} & \text{T} & \text{O} \\
1 & 2 & 3 \\
+ & 8 & 4 \\
\hline
\end{array}
\quad
\begin{array}{ccc}
\text{H} & \text{T} & \text{O} \\
7 & 3 & 7 \\
+ & 8 & 1 \\
\hline
\end{array}
\quad
\begin{array}{ccc}
\text{H} & \text{T} & \text{O} \\
1 & 7 & 5 \\
+ & 9 & 2 \\
\hline
\end{array}
\quad
\begin{array}{ccc}
\text{H} & \text{T} & \text{O} \\
4 & 3 & 0 \\
+ & 7 & 8 \\
\hline
\end{array}
\quad
\begin{array}{ccc}
\text{H} & \text{T} & \text{O} \\
5 & 2 & 2 \\
+ & 9 & 7 \\
\hline
\end{array}
\quad
\begin{array}{ccc}
\text{H} & \text{T} & \text{O} \\
6 & 8 & 5 \\
+ & 6 & 4 \\
\hline
\end{array}
\quad
\begin{array}{ccc}
\text{H} & \text{T} & \text{O} \\
7 & 6 & 5 \\
+ & 5 & 1 \\
\hline
\end{array}
\quad
\begin{array}{ccc}
\text{H} & \text{T} & \text{O} \\
7 & 1 & 2 \\
+ & 9 & 3 \\
\hline
\end{array}
\quad
\begin{array}{ccc}
\text{H} & \text{T} & \text{O} \\
8 & 6 & 5 \\
+ & 6 & 0 \\
\hline
\end{array}
\quad
\begin{array}{ccc}
\text{H} & \text{T} & \text{O} \\
8 & 1 & 3 \\
+ & 9 & 4 \\
\hline
\end{array}
\quad
\begin{array}{ccc}
\text{H} & \text{T} & \text{O} \\
5 & 8 & 4 \\
+ & 2 & 5 \\
\hline
\end{array}
\quad
\begin{array}{ccc}
\text{H} & \text{T} & \text{O} \\
3 & 7 & 8 \\
+ & 9 & 0 \\
\hline
\end{array}
\end{array}
Add the following numbers.

\[
\begin{array}{ccc}
\text{HTO} & \text{HTO} & \text{HTO} \\
183 & 678 & 382 \\
+754 & +150 & +145 \\
\hline \\
\text{HTO} & \text{HTO} & \text{HTO} \\
277 & 382 & 160 \\
+136 & +127 & +742 \\
\hline \\
\text{HTO} & \text{HTO} & \text{HTO} \\
150 & 453 & 267 \\
+458 & +396 & +482 \\
\hline \\
\text{HTO} & \text{HTO} & \text{HTO} \\
351 & 460 & 190 \\
+463 & +182 & +693 \\
\hline
\end{array}
\]
Addition problems in daily life

There are 5 biscuits in the plate. Ali puts 2 more biscuits. How many total biscuits are there in the plate?

<table>
<thead>
<tr>
<th>There are 5 biscuits in the plate.</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ali puts 2 more biscuits.</td>
<td>2</td>
</tr>
<tr>
<td>Total biscuits</td>
<td>7</td>
</tr>
</tbody>
</table>

Zara has 4 balloons. She buys 2 more. How many balloons does she have altogether?

<table>
<thead>
<tr>
<th>Zara has 4 balloons.</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>She buys 2 more.</td>
<td>2</td>
</tr>
<tr>
<td>Total balloons</td>
<td>6</td>
</tr>
</tbody>
</table>
Read the word problem. Complete the table and find the total number.

There were 7 balls in the box. Ahmed put 5 more balls. How many balls were in the box altogether?

<table>
<thead>
<tr>
<th>There were 7 balls in the box.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ahmed put 5 more.</td>
</tr>
<tr>
<td>Total balls</td>
</tr>
</tbody>
</table>

Sana has 10 pencils. She buys 4 more pencils. How many pencils does she have in total?

<table>
<thead>
<tr>
<th>Sana has 10 pencils.</th>
</tr>
</thead>
<tbody>
<tr>
<td>She buys 4 more pencils.</td>
</tr>
<tr>
<td>Total pencils</td>
</tr>
</tbody>
</table>
Read the following word problems and find the total number.

1. Haris has 20 sweets. His teacher gives him 5 more sweets. How many sweets does Haris have altogether?

2. Zara has 20 pencils. Sana has 15 pencils. How many pencils do they both have in total?

3. There are 129 pages in a book. There are 95 pages in another book. If Zara reads both books, how many pages will she read in total?

4. There are 154 boys and 126 girls in a school. How many students are there in the school altogether?

5. Imran has 43 apples and 27 oranges on his cart. What is the total number of fruits that he has on the cart?
Finding the missing number

Find the missing number.

\[2 + _ __ = 7 \]

Step 1 Look at the answer. Draw that many circles.

\[\begin{array}{cccccc}
\circ & \circ & \circ & \circ & \circ & \circ \\
\end{array} \]

The answer is 7 so make 7 circles.

Step 2 Cut circles according to the number before the blank.

\[\begin{array}{cccccc}
\circ & \circ & \circ & \circ & \circ & \circ \\
\end{array} \]

The number before the blank is 2 so we cut 2 circles.

Step 3 Count the uncut circles. Fill in the missing number.

\[2 + _ _5_ = 7 \]

The missing number is 5.

5 circles are left uncut so we write that in the blank.
Find the missing number.

2 + _____ = 5

3 + _____ = 7

4 + _____ = 8

5 + _____ = 6

2 + _____ = 3

1 + _____ = 9

6 + _____ = 8

3 + _____ = 9

1 + _____ = 4

2 + _____ = 4
Ahmed and Zara are giving away some of their toys. They want to know the number of toys left.

Can you help them subtract?

\[
\begin{array}{ccc}
5 & \quad & 6 \\
- & 2 & - & 3 \\
\hline
\end{array}
\]

\[
\begin{array}{ccc}
7 & \quad & 5 \\
- & 5 & - & 1 \\
\hline
\end{array}
\]

\[
\begin{array}{ccc}
9 & \quad & 4 \\
- & 5 & - & 2 \\
\hline
\end{array}
\]
Subtraction of tens and ones

Subtract 3 from 27.

\[
\begin{array}{c|c}
\text{Tens} & \text{Ones} \\
2 & 7 \\
\hline
& 3 \\
\end{array}
\]

Step 1:
Subtract ones.

\[
\begin{array}{c|c}
\text{Tens} & \text{Ones} \\
2 & 7 \\
\hline
- & 3 \\
\hline
& 4 \\
\end{array}
\]

Step 2:
Subtract tens.

\[
\begin{array}{c|c}
\text{Tens} & \text{Ones} \\
2 & 7 \\
\hline
- & 3 \\
\hline
2 & 4 \\
\end{array}
\]

Find the difference between 24 and 13.

\[
\begin{array}{c|c}
\text{Tens} & \text{Ones} \\
2 & 4 \\
\hline
- & 3 \\
\hline
1 & 1 \\
\end{array}
\]
Subtract the following numbers.

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
<th>Tens</th>
<th>Ones</th>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td>-</td>
<td>5</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>-</td>
<td>5</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>-</td>
<td>1</td>
<td>-</td>
<td>4</td>
<td>-</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>9</td>
<td>7</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>-</td>
<td>4</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Subtract the following numbers.

<table>
<thead>
<tr>
<th>Tens</th>
<th>Ones</th>
<th>Tens</th>
<th>Ones</th>
<th>Tens</th>
<th>Ones</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>2</td>
<td>8</td>
<td>7</td>
<td>4</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td>1</td>
<td>-4</td>
<td>5</td>
<td>-2</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>4</td>
<td>5</td>
<td>9</td>
<td>6</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td>3</td>
<td>-2</td>
<td>3</td>
<td>-2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>7</td>
<td>8</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td>1</td>
<td>-4</td>
<td>2</td>
<td>-1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>4</td>
<td>8</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-8</td>
<td>5</td>
<td>-3</td>
<td>4</td>
<td>-1</td>
<td>3</td>
</tr>
</tbody>
</table>
Subtraction with borrowing

Subtract 7 from 31.

\[
\begin{array}{c|c}
\text{Tens} & \text{Ones} \\
\hline
3 & 1 \\
- & 7 \\
\end{array}
\]

Step 1:
Subtract ones.

\[
\begin{array}{c|c}
\text{Tens} & \text{Ones} \\
\hline
2 & 3 \\
\hline
1 & 1 \\
- & 7 \\
\hline
1 & 4 \\
\end{array}
\]

We cannot subtract 7 ones from 1 one.
We will borrow 1 ten from the tens side.
1 ten + 1 one = 11 ones
\[11 - 7 = 4\]

Step 2:
Subtract tens.

\[
\begin{array}{c|c}
\text{Tens} & \text{Ones} \\
\hline
2 & 3 \\
\hline
1 & 1 \\
- & 7 \\
\hline
2 & 4 \\
\end{array}
\]
Subtract these numbers. Remember that T stands for tens and O for ones.

\[
\begin{array}{c c}
T & O \\
3 & 3 \\
- & 5 \\
&
\end{array}
\quad
\begin{array}{c c}
T & O \\
6 & 4 \\
- & 5 \\
&
\end{array}
\]

Remember:

Step 1 Subtract ones. If you cannot subtract one, borrow 1 ten from the tens side. Then subtract ones.

Step 2 Subtract tens.

\[
\begin{array}{c c}
T & O \\
8 & 4 \\
- & 9 \\
&
\end{array}
\quad
\begin{array}{c c}
T & O \\
3 & 2 \\
- & 9 \\
&
\end{array}
\]

\[
\begin{array}{c c}
T & O \\
4 & 3 \\
- & 6 \\
&
\end{array}
\quad
\begin{array}{c c}
T & O \\
5 & 0 \\
- & 8 \\
&
\end{array}
\quad
\begin{array}{c c}
T & O \\
6 & 1 \\
- & 5 \\
&
\end{array}
\]

\[
\begin{array}{c c}
T & O \\
3 & 4 \\
- & 7 \\
&
\end{array}
\quad
\begin{array}{c c}
T & O \\
4 & 1 \\
- & 3 \\
&
\end{array}
\quad
\begin{array}{c c}
T & O \\
8 & 2 \\
- & 5 \\
&
\end{array}
\]
Subtract 18 from 42.

Step 1:
Subtract ones.

We cannot subtract 8 ones from 2 ones. We will borrow 1 ten from the tens side. 1 ten + 2 ones = 12 ones

12 - 8 = 4

Step 2:
Subtract tens.
Subtract the following numbers.

\[
\begin{array}{c}
\text{T O} \\
6 \ 2 \\
- \ 1 \ 9 \\
\hline
\end{array}
\quad \quad
\begin{array}{c}
\text{T O} \\
4 \ 5 \\
- \ 2 \ 8 \\
\hline
\end{array}
\]

\[
\begin{array}{c}
\text{T O} \\
5 \ 4 \\
- \ 1 \ 6 \\
\hline
\end{array}
\quad \quad
\begin{array}{c}
\text{T O} \\
4 \ 3 \\
- \ 1 \ 7 \\
\hline
\end{array}
\]

Remember:

1. Subtract ones. If you cannot subtract ones, borrow 1 ten from the tens side. Then subtract ones.
2. Subtract tens.

\[
\begin{array}{c}
\text{T O} \\
7 \ 2 \\
- \ 4 \ 8 \\
\hline
\end{array}
\quad \quad
\begin{array}{c}
\text{T O} \\
6 \ 0 \\
- \ 4 \ 7 \\
\hline
\end{array}
\quad \quad
\begin{array}{c}
\text{T O} \\
5 \ 3 \\
- \ 1 \ 8 \\
\hline
\end{array}
\]

\[
\begin{array}{c}
\text{T O} \\
4 \ 6 \\
- \ 2 \ 9 \\
\hline
\end{array}
\quad \quad
\begin{array}{c}
\text{T O} \\
8 \ 2 \\
- \ 4 \ 6 \\
\hline
\end{array}
\quad \quad
\begin{array}{c}
\text{T O} \\
5 \ 1 \\
- \ 3 \ 9 \\
\hline
\end{array}
\]
Subtraction of hundreds, tens and ones

Subtract 143 from 267.

Step 1:
Subtract ones.

\[
\begin{array}{ccc}
\text{H} & \text{T} & \text{O} \\
2 & 6 & 7 \\
-1 & 4 & 3 \\
\hline
1 & 2 & 4 \\
\end{array}
\]

Step 2:
Subtract tens.

\[
\begin{array}{ccc}
\text{H} & \text{T} & \text{O} \\
2 & 6 & 7 \\
-1 & 4 & 3 \\
\hline
1 & 2 & 4 \\
\end{array}
\]

Step 3:
Subtract hundreds

\[
\begin{array}{ccc}
\text{H} & \text{T} & \text{O} \\
2 & 6 & 7 \\
-1 & 4 & 3 \\
\hline
1 & 2 & 4 \\
\end{array}
\]
Subtract the following numbers. Remember that H stands for hundreds, T for tens and O for ones.

\[
\begin{array}{ccc}
\text{H} & \text{T} & \text{O} \\
5 & 7 & 8 \\
- & & 6 \\
\hline
\end{array}
\quad
\begin{array}{ccc}
\text{H} & \text{T} & \text{O} \\
6 & 3 & 4 \\
- & & 2 \\
\hline
\end{array}
\quad
\begin{array}{ccc}
\text{H} & \text{T} & \text{O} \\
3 & 4 & 6 \\
- & & 1 \\
\hline
\end{array}
\quad
\begin{array}{ccc}
\text{H} & \text{T} & \text{O} \\
7 & 6 & 8 \\
- & 5 & 7 \\
\hline
\end{array}
\quad
\begin{array}{ccc}
\text{H} & \text{T} & \text{O} \\
4 & 8 & 9 \\
- & 6 & 5 \\
\hline
\end{array}
\quad
\begin{array}{ccc}
\text{H} & \text{T} & \text{O} \\
8 & 3 & 2 \\
- & 1 & 1 \\
\hline
\end{array}
\quad
\begin{array}{ccc}
\text{H} & \text{T} & \text{O} \\
4 & 8 & 3 \\
- & 3 & 0 \\
\hline
\end{array}
\quad
\begin{array}{ccc}
\text{H} & \text{T} & \text{O} \\
7 & 9 & 5 \\
- & 6 & 2 \\
\hline
\end{array}
\quad
\begin{array}{ccc}
\text{H} & \text{T} & \text{O} \\
8 & 9 & 6 \\
- & 7 & 2 \\
\hline
\end{array}
\quad
\begin{array}{ccc}
\text{H} & \text{T} & \text{O} \\
9 & 8 & 7 \\
- & 6 & 7 & 2 \\
\hline
\end{array}
\quad
\begin{array}{ccc}
\text{H} & \text{T} & \text{O} \\
7 & 9 & 8 \\
- & 3 & 6 & 5 \\
\hline
\end{array}
\quad
\begin{array}{ccc}
\text{H} & \text{T} & \text{O} \\
5 & 3 & 6 \\
- & 4 & 2 & 3 \\
\hline
\end{array}
\end{array}
Subtract 165 from 317.

Step 1:
Subtract ones.

\[
\begin{array}{c|c|c}
\text{H} & \text{T} & \text{O} \\
3 & 1 & 7 \\
- 1 & 6 & 5 \\
\hline
\end{array}
\]

\[
\text{2}
\]

Step 2:
Subtract tens.

\[
\begin{array}{c|c|c}
\text{H} & \text{T} & \text{O} \\
\begin{array}{c|c|c}
23 & 1 & 7 \\
- 1 & 6 & 5 \\
\hline
5 & 2
\end{array}
\end{array}
\]

Step 3:
Subtract hundreds

\[
\begin{array}{c|c|c}
\text{H} & \text{T} & \text{O} \\
\begin{array}{c|c|c}
23 & 1 & 7 \\
- 1 & 6 & 5 \\
\hline
1 & 5 & 2
\end{array}
\end{array}
\]
Let's look at another example.

Step 1:
Subtract ones.

\[
\begin{array}{c}
H & T & O \\
3 & 1 & 2 & 14 \\
- & 1 & 5 & 7 \\
\hline
\end{array}
\]

We will borrow 1 ten from the tens side.
1 ten + 4 ones = 14
14 - 7 = 7

Step 2:
Subtract tens.

\[
\begin{array}{c}
H & T & O \\
2 & 3 & 11 & 2 & 14 \\
- & 1 & 5 & 7 \\
\hline
\end{array}
\]

We are left with 1 ten so we will borrow 1 hundred from the hundreds side.
11 - 5 = 6

Step 3:
Subtract hundreds

\[
\begin{array}{c}
H & T & O \\
2 & 3 & 11 & 2 & 14 \\
- & 1 & 5 & 7 \\
\hline
1 & 6 & 2 \\
\end{array}
\]

We are left with 2 hundreds so we will subtract 1 from 2.
Subtract the following numbers.

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5 6 7</td>
<td>4 3 7</td>
<td>5 4 3</td>
</tr>
<tr>
<td>- 7 5</td>
<td>- 8 2</td>
<td>- 9 2</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2 3 7</td>
<td>4 2 9</td>
<td>7 1 4</td>
</tr>
<tr>
<td>- 5 4</td>
<td>- 5 7</td>
<td>- 6 2</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8 2 3</td>
<td>2 5 4</td>
<td>3 6 5</td>
</tr>
<tr>
<td>- 4 6</td>
<td>- 7 1</td>
<td>- 8 2</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6 0 9</td>
<td>3 6 7</td>
<td>8 1 4</td>
</tr>
<tr>
<td>- 4 2</td>
<td>- 7 2</td>
<td>- 7 0</td>
</tr>
</tbody>
</table>
Subtract the following numbers.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>T</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>- 1</td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>T</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>- 6</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>T</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>- 2</td>
<td>4</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>T</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>- 7</td>
<td>1</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>T</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>- 1</td>
<td>9</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>T</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>- 2</td>
<td>3</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>T</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>- 2</td>
<td>7</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>T</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>- 2</td>
<td>5</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>T</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>- 3</td>
<td>6</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>H</td>
<td>T</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>- 2</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>T</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>- 2</td>
<td>4</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>----</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>T</td>
<td>O</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>- 4</td>
<td>6</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Subtraction problems in daily life

There are 5 apples on a tree. 2 apples fall off. How many are left on the tree?

<table>
<thead>
<tr>
<th>There are 5 apples on a tree.</th>
<th></th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 apples fall off.</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Apples left</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

There are 4 bottles on a table. 1 bottle falls off. How many are left on the table?

<table>
<thead>
<tr>
<th>There are 4 bottles.</th>
<th></th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 bottle falls off.</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Bottles left</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>
Read the word problem. Complete the table.

There are 6 oranges on a tree. 3 oranges fall off. How many are left on the tree?

<table>
<thead>
<tr>
<th>There are 6 oranges on a tree.</th>
<th>![Tree Image]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 oranges fall off.</td>
<td>![Orange Images]</td>
</tr>
<tr>
<td>Oranges left on the tree</td>
<td>![Tree Image]</td>
</tr>
</tbody>
</table>

There are 7 biscuits in the plate. Ali eats 2 biscuits. How many are left on the plate?

<table>
<thead>
<tr>
<th>There are 7 biscuits in the plate.</th>
<th>![Plate Image]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ali eats 2 biscuits.</td>
<td>![Biscuit Images]</td>
</tr>
<tr>
<td>Biscuits left in the plate</td>
<td>![Plate Image]</td>
</tr>
</tbody>
</table>
Read the word problem and solve the question.

1. Adil has 16 carrots. His sister ate 3 carrots. How many carrots were left with Adil?

2. There are 39 students in Ahmed’s class. 5 students were absent. How many students were present?

3. Sana has 549 beads. She loses 127 beads. How many beads are left?

4. Imran grew 81 plants. 13 plants died during the summer. How many plants were left?

5. Ahmed has 135 books. He gives away 18 books to his friends. How many books are left?

6. There were 81 pots in Imran’s shop. He sold 27 pots. How many pots were left?
Finding the missing number

Find the missing number.

\[5 - \underline{} = 2 \]

1. Look at the answer. Draw that many circles.

\[\bullet \bullet \]

The answer is 2 so we make 2 circles.

2. Look at the number before the blank. Draw more circles till you reach that number.

\[\bullet \bullet \bullet \bullet \]

The number before the blank is 5 so we make 3 more circles.

3. Count the additional circles you made. Fill in the missing number.

\[5 - \underline{3} = 2 \]

The missing number is 3.
Find the missing number.

5 - ______ = 4

7 - ______ = 2

4 - ______ = 1

9 - ______ = 6

3 - ______ = 2

8 - ______ = 3

6 - ______ = 4

7 - ______ = 3

2 - ______ = 1

9 - ______ = 4
Repeated Addition & Multiplication

How many apples are there altogether?

There are 3 groups.
Each group has 2 apples.

\[2 + 2 + 2 = 6 \]

There are 6 apples altogether.

How many fish are there in total?

There are 5 bowls.
Each bowl has 2 fish.

\[2 + 2 + 2 + 2 + 2 = 10 \]

There are 10 fish in total.
Count the number of groups. Count the object in each group and write the total number.

There are _____ groups.
Each group has _____ sweets.

\[
4 + 4 = __
\]

There are _____ groups.
Each group has _____ balls.

\[
5 + ___ + 5 = __
\]

There are _____ groups.
Each group has _____ eggs.

\[
3 + ___ + 3 + ___ = __
\]
Multiplication

How many stars are there altogether?

There are 4 groups. Each group has 2 stars.

\[
2 + 2 + 2 + 2 = 8 \\
4 \times 2 = 8
\]

We read it as four times two equals eight.

\[x\] is read as times.
It means to multiply or to put all the equal groups altogether.

How many mangoes are there in total?

There are 3 groups. Each group has 5 mangoes.

\[
5 + 5 + 5 = 15 \\
3 \times 5 = 15
\]

We read it as three times five equals fifteen.
Look at the pictures and fill in the blanks.

There are ___ groups.

Each group has ___ oranges.

3 \times ___ $=$ ___

3 times ___ equals ___.

There are ___ oranges altogether.

There are ___ groups.

Each group has ___ butterflies.

___ \times 2 $=$ ___

___ times 2 equals ___.

There are ___ butterflies altogether.
Multiplication Table of 2

1 x 2 = 2
1 times 2 equals 2

2 x 2 = 4
2 times 2 equals 4

3 x 2 = 6
3 times 2 equals 6

4 x 2 = 8
4 times 2 equals 8

5 x 2 = 10
5 times 2 equals 10

6 x 2 = 12
6 times 2 equals 12

7 x 2 = 14
7 times 2 equals 14

8 x 2 = 16
8 times 2 equals 16

9 x 2 = 18
9 times 2 equals 18

10 x 2 = 20
10 times 2 equals 20
Multiplication Table of 3

<table>
<thead>
<tr>
<th>x</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>12</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>6</td>
<td>18</td>
</tr>
<tr>
<td>7</td>
<td>21</td>
</tr>
<tr>
<td>8</td>
<td>24</td>
</tr>
<tr>
<td>9</td>
<td>27</td>
</tr>
<tr>
<td>10</td>
<td>30</td>
</tr>
</tbody>
</table>

1 times 3 equals 3
2 times 3 equals 6
3 times 3 equals 9
4 times 3 equals 12
5 times 3 equals 15
6 times 3 equals 18
7 times 3 equals 21
8 times 3 equals 24
9 times 3 equals 27
10 times 3 equals 30
Read the table of 2 and write the answers.

\[
\begin{array}{llll}
2 \times 2 &= 2 \\
3 \times 2 &= 6 \\
6 \times 2 &= 12 \\
9 \times 2 &= 18 \\
1 \times 2 &= 2 \\
5 \times 2 &= 10 \\
\end{array}
\]

Complete the table of 2.

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Look at the pictures and fill in the blanks.

\[
\begin{array}{cccc}
\triangle \triangle \triangle & \triangle \triangle \triangle & \triangle \triangle \triangle & \triangle \triangle \triangle \\
\end{array}
\]

\[
4 \times _ _ _ = _ _ _
\]

4 times _ _ _ equals _ _ _

There are _ _ _ triangles altogether.

Complete the table of 3.

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>3</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Multiplication Table of 4

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>1</td>
<td>4</td>
</tr>
</tbody>
</table>

1 x 4 = 4
1 times 4 equals 4

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>8</td>
<td>12</td>
</tr>
</tbody>
</table>

2 x 4 = 8
2 times 4 equals 8

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>4</td>
<td>16</td>
<td>20</td>
</tr>
</tbody>
</table>

3 x 4 = 12
3 times 4 equals 12

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>16</td>
<td>24</td>
</tr>
</tbody>
</table>

4 x 4 = 16
4 times 4 equals 16

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>4</td>
<td>20</td>
<td>24</td>
</tr>
</tbody>
</table>

5 x 4 = 20
5 times 4 equals 20

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>4</td>
<td>24</td>
<td>28</td>
</tr>
</tbody>
</table>

6 x 4 = 24
6 times 4 equals 24

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>4</td>
<td>28</td>
<td>32</td>
</tr>
</tbody>
</table>

7 x 4 = 28
7 times 4 equals 28

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4</td>
<td>32</td>
<td>36</td>
</tr>
</tbody>
</table>

8 x 4 = 32
8 times 4 equals 32

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>4</td>
<td>36</td>
<td>40</td>
</tr>
</tbody>
</table>

9 x 4 = 36
9 times 4 equals 36

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>4</td>
<td>40</td>
<td>40</td>
</tr>
</tbody>
</table>

10 x 4 = 40
10 times 4 equals 40
Multiplication Table of 5

1 x 5 = 5
1 times 5 equals 5

2 x 5 = 10
2 times 5 equals 10

3 x 5 = 15
3 times 5 equals 15

4 x 5 = 20
4 times 5 equals 20

5 x 5 = 25
5 times 5 equals 25

6 x 5 = 30
6 times 5 equals 30

7 x 5 = 35
7 times 5 equals 35

8 x 5 = 40
8 times 5 equals 40

9 x 5 = 45
9 times 5 equals 45

10 x 5 = 50
10 times 5 equals 50
Read the table of 4 and write the answers.

\[2 \times 4 = ___ \quad 5 \times 4 = ___ \quad 7 \times 4 = ___ \]

\[8 \times 4 = ___ \quad 3 \times 4 = ___ \quad 6 \times 4 = ___ \]

Complete the table of 4.

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>4</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Look at the pictures and fill in the blanks.

\[2 \times ___ = ___ \]

2 times ___ equals ___

There are ___ butterflies altogether.

Complete the table of 5.

<table>
<thead>
<tr>
<th>x</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Multiplication Table of 10

<p>| | | | | | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

1 x 10 = 10
1 times 10 equals 10

2 x 10 = 20
2 times 10 equals 20

3 x 10 = 30
3 times 10 equals 30

4 x 10 = 40
4 times 10 equals 40

5 x 10 = 50
5 times 10 equals 50

6 x 10 = 60
6 times 10 equals 60

7 x 10 = 70
7 times 10 equals 70

8 x 10 = 80
8 times 10 equals 80

9 x 10 = 90
9 times 10 equals 90

10 x 10 = 100
10 times 10 equals 100
More about Multiplication

How many keys are there in total?

2 + 2 + 2

There are 3 twos so:

\[2 + 2 + 2 = 3 \times 2\]

\[3 \times 2 = 6\]

There are 6 keys altogether.

How many erasers are there in total?

3 + 3 + 3 + 3 + 3 + 3

There are 5 threes so:

\[3 + 3 + 3 + 3 + 3 = 5 \times 3\]

\[5 \times 3 = 15\]

There are 15 erasers altogether.
Fill in the blanks.

\[4 + __ + 4 = 3 \times __ \]

\[5 + 5 = __ \times 5 \]

\[__ + 3 + 3 + __ = 4 \times 3 \]

\[6 + 6 + __ = 3 \times 6 \]

\[2 + 2 + __ + 2 + __ = 5 \times 2 \]

Multiply and write the answer.

\[3 \times 2 = _________ \]

\[6 \times 2 = _________ \]

\[3 \times 5 = _________ \]

\[10 \times 2 = _________ \]

\[1 \times 3 = _________ \]

\[9 \times 4 = _________ \]

\[6 \times 5 = _________ \]

\[8 \times 3 = _________ \]
Hamza had 8 balloons.

Zubair took 2 balloons from him.

\[8 - 2 = 6 \]

Hamza was left with 6 balloons.

Ali took 2 balloons.

\[6 - 2 = 4 \]

Hamza was left with 4 balloons.

Ahmed took 2 balloons.

\[4 - 2 = 2 \]

Hamza was left with 2 balloons.

Asif took 2 balloons.

\[2 - 2 = 0 \]

Hamza was left with 0 balloons.
How many times did Hamza subtract 2?

\[
\begin{align*}
8 - 2 &= 6 \\
6 - 2 &= 4 \\
4 - 2 &= 2 \\
2 - 2 &= 0
\end{align*}
\]

Hamza subtracted 2 four times.

There are 10 stars. How many times can you subtract 2?

\[
\begin{align*}
\text{★★★★★★★★★★} \\
\text{★★★★★★★★★★} & \quad 10 - 2 = 8 \\
\text{★★★★★★★★★} & \quad 8 - 2 = 6 \\
\text{★★★★★★} & \quad 6 - 2 = 4 \\
\text{★★★★} & \quad 4 - 2 = 2 \\
\text{★★} & \quad 2 - 2 = 0
\end{align*}
\]

We can subtract 2 five times.
Count the objects. Subtract 2 from them till you are left with 0.

8 - 2 = ____
____ - 2 = ____
____ - 2 = ____
____ - 2 = ____

4 - 2 = ____
____ - 2 = ____

6 - 2 = ____
____ - 2 = ____
____ - 2 = ____
Division

Ahmed has 6 apples.
He wants to put the 6 apples equally into 2 bags.

\[6 \div 2 = 3 \]

6 divided by 2 is equal to 3.
There are 3 apples in each bag.
\[\div \text{ is read as divided by.} \]
\[\div \text{ stands for division} \]

Now, Ahmed wants to put the 6 apples equally into 3 bags.

\[6 \div 3 = 2 \]

There are 2 apples in each bag.
Anum has 12 sweets.
She shares the sweets equally among her 4 friends.

\[12 \div 4 = 3 \]
Each friend gets 3 sweets.

Haris has 10 erasers.
He puts equal number of erasers in 2 boxes.

\[10 \div 2 = 5 \]
There are 5 erasers in each box.

Anum has 9 rings.
She puts equal number of rings in 3 boxes.

\[9 \div 3 = 3 \]
There are 3 rings in each box.
Sana has 18 biscuits.
She shares the biscuits equally among her 3 friends.

\[
18 \div 3 =
\]
Each friend gets ___ biscuits.

Ahmed has 12 marbles.
He puts equal number of marbles in 2 boxes.

\[
12 \div 2 =
\]
There are ___ marbles in each box.

Ali has 15 oranges.
He puts equal number of oranges in 5 boxes.

\[
15 \div 5 =
\]
There are ___ oranges in each box.
1. Ali has 20 mangoes.
 He puts equal number of mangoes in 4 boxes.

 \[20 \div 4 = ___ \]

 There are ____ mangoes in each box.

2. Zara has 10 pencils.
 She puts equal number of pencils in 5 boxes.

 \[10 \div 5 = ___ \]

 There are ____ pencils in each box.

3. Haris has 30 sweets.
 He puts equal number of sweets in 3 boxes.

 \[30 \div 3 = ___ \]

 There are ____ sweets in each box.
Hamza has 8 balloons.

He shares the balloons equally with his 4 friends.

How many balloons does each friend get?

\[8 \div 4 = ? \]

Recall the table of 4.

\[1 \times 4 = 4 \]
\[2 \times 4 = 8 \]

8 comes in the table of 4 after 2 times.

\[8 \div 4 = 2 \]

Each friend gets 2 balloons.
Anum has 6 cups.

She puts equal number of cups in 3 boxes. How many cups are there in each box?

\[6 \div 3 = ? \]

Recall the table of 3.

\[1 \times 3 = 3 \]
\[2 \times 3 = 6 \]

6 comes in the table of 3 in the second step.

\[6 \div 3 = 2 \]

There are 2 cups in each box.
Divide these numbers.

\[6 \div 2 = 3 \]

\[2 \times 1 = 2 \]
\[2 \times 2 = 4 \]
\[2 \times 3 = 6 \]

6 comes in the table of 2 after 3 times in the third step

\[12 \div 4 = ____ \]

\[6 \div 2 = ____ \]

\[25 \div 5 = ____ \]

\[40 \div 10 = ____ \]

\[24 \div 4 = ____ \]
We see shapes around us.

This is a triangle. A triangle has three sides.

This is a rectangle. A rectangle has two opposite sides equal in size.

This is a circle. It has no sides.

This is a square. A square has four equal sides.
Colour the shape that is like the one in the first column.

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Write 1 in all rectangles, 2 in all squares, 3 in all circles and 4 in all triangles.

We can make pictures using shapes.

The house is made of 1 triangle, 4 squares and 2 rectangles.

Now, try and make a different picture using these shapes in your notebooks.
Vertex of a shape

The point where 2 sides join is called a vertex.

A triangle has 3 vertices.

A rectangle has 4 vertices.

A circle has 0 vertices.

A square has 4 vertices.
Complete the tables.

<table>
<thead>
<tr>
<th>Shape</th>
<th>Name</th>
<th>Sides</th>
<th>Vertices</th>
</tr>
</thead>
<tbody>
<tr>
<td>![Triangle]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>![Circle]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>![Rectangle]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>![Square]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Riddles</th>
</tr>
</thead>
</table>
| I have 3 sides.
I have 3 vertices.
Who am I? |
| I have 4 sides.
I have 4 vertices.
My sides are equal.
Who am I? |
| I have no side.
I have no vertex.
Who am I? |
Money

We use money every day in our lives. We buy things using coins and notes.

Here are some of the coins and notes we use.

Rs. 5 Rs. 2 Re. 1

Rs. 10 Rs. 20 Rs. 50 Rs. 100

Sana has a Rs. 10 note and a Rs. 5 coin. How much money does she have?

10 + 5

Sana has Rs. 15 in total.
Count the money in each box and write the total amount.

Rs. ____________________

124
Ali and Zara are at a shop with their father. They each buy some things. Here are the prices of the things they buy.

- Football: Rs. 50
- Backpack: Rs. 100
- Cap: Rs. 30
- Book: Rs. 70

Can you help each of them calculate the total cost?

Zara buys a bag and a cap. What is her total cost?

Ali buys a football and cap. What is his total cost?

Their father buys a book and a bag. What is his total cost?
Ali and Zara stop to buy some apples.

The cost of the apples is Rs. 70.

Their father gives a Rs. 100 note to the fruit seller.

How much money does he get back?

\[
\begin{array}{c}
100 \\
- 70 \\
\hline
30 \\
\end{array}
\]

We want to know the amount of money left so we will subtract.

Ali and Zara’s father got Rs. 30 back.

When the money that we give is more than the cost of the object, we get back change.

We can say that Ali’s father got back Rs. 30 change.
Look at these things.

- Pencil Rs. 5
- Sharpener Rs. 15
- Eraser Rs. 4
- Ruler Rs. 20
- Notebook Rs. 35

1. Ali buys a pencil. He gives the shopkeeper a Rs.20 note. How much change does he get back?

2. Sana buys a ruler. She gives the shopkeeper a Rs.50 note. How much change does she get back?

3. Zubair buys a notebook. He gives the shopkeeper a Rs.100 note. How much change does he get back?

4. Zain buys a sharpener. He gives the shopkeeper a Rs.20 note. How much change does he get back?
Encircle the longer object.
We can use different things to measure the length of a blackboard.

We can use hand span. We can use a book.

Measure with your hand span and write the length of these objects.

Desk _______________ hand spans

Bag _______________ hand spans

Blackboard _______________ hand spans

Chair _______________ hand spans
Length in centimetres

For a standard measurement, we use units.
Centimetre is a unit of measurement. We can also write it as cm.
We can use a ruler to measure the length of an object.
The length from the 0 mark to the 1 mark on the ruler below is 1 centimetre.

![Ruler with objects]

The eraser is 4 cm long.
The pencil is 10 cm long.
The scissors is 15 cm long.
Read the lengths of the objects below.

The length of the pencil is ______ cm.

The length of the nail is ______ cm.

The length of the comb is ______ cm.
Length in metres

Ali wants to know the length of the wall. He uses a metre ruler.

We can use metres to measure longer objects.

Metres is another unit of measurement. We can write it as m.

Tell whether we will use metres or centimetres to measure the given objects.

<table>
<thead>
<tr>
<th>Object</th>
<th>cm</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Truck</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pencil box</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Car</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Look at the metre ruler. It is 1 metre long.

The chair is shorter than the metre ruler. It is less than 1 m tall.

Zara is about as tall as the metre ruler. She is about 1 m tall.

The teacher is taller than the metre ruler. She is more than 1 m tall.
Look at the metre ruler. It is 1 metre long.

Which object is greater than 1 m?

Which object is less than 1 m?

1. Ahmed bought 44 metres long pipe. His brother bought 9 metres long pipe. What is the total length of both pipes?

2. Seema has a 54 metre long wire. She gives away 20 metres to her brother. How many metres wire does Seema have now?
We can use a ruler to draw a line of certain length.

1. Place the ruler straight on a flat surface.

2. Draw a line from 0 to 5 cm.

Read the length. Use a ruler to draw a line of that length.

1. 6 cm
2. 7 cm
3. 3 cm
4. 4 cm
5. 9 cm
Measuring Mass

Encircle the side that is heavier.
Measuring Mass

We can use standard units of measurement to measure mass.

Gram is a standard unit of measurement. We can write it as g.

Look at this: g

This is equal to 1 gram.

![Image of a balance with 4 grams]

There are 4 g. The mass of the pencil is 4 g.

Kilogram is another standard unit of measurement. We can write it as kg.

Look at this: kg

This is equal to 1 kilogram.

![Image of a balance with 1 kilogram]

There is 1 kg. The mass of the flour is 1 kg.
Look at the pictures. Write the mass of each object.

- [Image of a balance scale with a green apple on the left and two 1-kg weights on the right.]
 - \[\text{g}\]
- [Image of a balance scale with a basket of oranges on the left and a 5-kg weight on the right.]
 - \[\text{kg}\]
- [Image of a balance scale with a brick on the left and two 2-kg weights on the right.]
 - \[\text{kg}\]
- [Image of a balance scale with blocks and a weight on the right.]
 - \[\text{g}\]

1. The mass of mangoes is 5 kg. The mass of apples is 2 kg. What is the total mass of apples and mangoes?

2. Ahmed bought 18 kg of ice. He used 3 kg of ice. How many kg of ice were left?
Measuring Capacity

Look at the jug. How many glasses of water can it hold?

This jug can hold 3 glasses of water.

Encircle the object that will hold less water than the jug.

Encircle the object that will hold the most water.
Sana wants to know the exact amount of water that this pot can hold.

The pot can hold 2 jugs of water.

Each jug can hold 1 litre.

Litre is the standard unit of measurement used to measure capacity. We can write it as L.

The pot can hold 2 L of water.

Millilitres is also a standard unit of measurement used to measure capacity. We can write it as mL.

Look at this jug.

This has 200 mL of water.
Look at the measuring jug. Write the amount of water in the jug.

____ mL _____ mL _____ mL

1. There are 400 litres of water in a tank. There are 80 litres of water in a pot. How many litres of water are there altogether?

2. There are 20 litres of water in a bottle. Hassan drinks 3 litres of water. How many litres of water are left in the bottle?
Fractions

Look at the circle.

It is divided into 2 equal parts.
1 part out of 2 is coloured
\(\frac{1}{2} \) of the circle is coloured.

The circle is divided into 4 equal parts.
1 part out of 4 is coloured.
\(\frac{1}{4} \) of the circle is coloured.

The circle divided into 3 equal parts.
1 part out of 3 is coloured.
\(\frac{1}{3} \) of the circle is coloured.

\(\frac{1}{2}, \frac{1}{4} \) and \(\frac{1}{3} \) are examples of fractions.

A fraction shows a part of a whole that is divided into equal parts.
The square is divided into 2 equal parts.
1 part out of 2 is coloured
\(\frac{1}{2}\) of the square is coloured.

We say one half of the square is coloured.

The square is divided into 4 equal parts.
1 part out of 4 is coloured
\(\frac{1}{4}\) of the square is coloured.

We say one quarter of the square is coloured.

The square is divided into 3 equal parts.
1 part out of 3 is coloured.
\(\frac{1}{3}\) of the square is coloured.

We say one third of the square is coloured.
Look at the rectangle. What fraction of the rectangle is coloured?

1. Count the number of parts. Write them under the line.

\[
\frac{1}{3}
\]

The rectangle has 3 parts so we will write 3 under the line.

2. Count the number of coloured parts. Write them above the line.

\[
\frac{1}{3}
\]

The rectangle has 1 coloured part so we will write 1 above the line.

\[
\frac{1}{3}
\] of the rectangle is coloured.
In the following figures, look at the total number of parts. Then look at the coloured part. Write the fraction that is coloured.
Look at the circle.

Colour $\frac{1}{3}$ of the circle.

$\frac{1}{3} = 1 \text{ out of } 3$ equal parts

We will colour 1 out of 3 parts.

Look at the square.

Colour $\frac{1}{4}$ of the square.

$\frac{1}{4} = 1 \text{ out of } 4$ equal parts

We will colour 1 out of 4 parts.
In the following table, look at the fraction and colour the figure.

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Figure</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\frac{1}{3})</td>
<td>![Fraction 1/3 Diagram]</td>
</tr>
<tr>
<td>(\frac{1}{2})</td>
<td>![Fraction 1/2 Circle]</td>
</tr>
<tr>
<td>(\frac{1}{4})</td>
<td>![Fraction 1/4 Circle]</td>
</tr>
<tr>
<td>(\frac{1}{2})</td>
<td>![Fraction 1/2 Rectangles]</td>
</tr>
<tr>
<td>(\frac{1}{4})</td>
<td>![Fraction 1/4 Rectangles]</td>
</tr>
<tr>
<td>(\frac{1}{3})</td>
<td>![Fraction 1/3 Rectangles]</td>
</tr>
</tbody>
</table>
More about Fractions

Look at the circle. What fraction of the circle is coloured?

1. Count the number of parts. Write them under the line.

\[
\begin{align*}
\text{The circle has} & \quad 8 \text{ parts so we will write 8 under the line.} \\
\end{align*}
\]

\[
\frac{1}{8}
\]

2. Count the number of coloured parts. Write them above the line.

\[
\begin{align*}
\text{The circle has} & \quad 1 \text{ coloured part so we will write 1 above the line.} \\
\end{align*}
\]

\[
\frac{1}{8}
\]

\[
\frac{1}{8}
\] of the circle is coloured.
Look at the figure. Write the fraction that is coloured.
Read the fraction. Match it with the correct figure.

\[
\frac{1}{6}
\]

\[
\frac{1}{5}
\]

\[
\frac{1}{4}
\]

\[
\frac{1}{12}
\]
A clock tells us the time.
It has a minute hand and an hour hand.
The longer hand is the minute hand. It shows us the minutes.
The shorter hand is the hour hand. It shows us the hours.

When the minute hand is pointing towards 12, we read the time as o’clock.

Match the clock with the correct time.

<table>
<thead>
<tr>
<th>Clock with minute hand pointing towards 12</th>
<th>9 o’clock</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clock with minute hand at 11</td>
<td>11 o’clock</td>
</tr>
<tr>
<td>Clock with minute hand at 5</td>
<td>5 o’clock</td>
</tr>
</tbody>
</table>
Read the time. Make hands on the clock.

- 10 o’clock
- 6 o’clock
- 8 o’clock
- 4 o’clock
- 3 o’clock
- 1 o’clock
Look at this clock.

The minute hand is at 12 and the hour hand is at 3. The minute hand wants to move from 12 to 1. It will count till 5 to reach number 1.

It will again count till 5 to reach number 2 and so on.

The number of times the long hand is moving are called minutes.
How many minutes are there?
Let's count in 5.

It takes 60 minutes for the hour hand to move from 3 to 4.

60 minutes = 1 hour

Look at this clock.
The hour hand is at 3.
The minute hand is at 1.
This means it is 5 minutes after 3 o'clock.
Look at this clock.

The hour hand is at 3. We write 3 on the left side.

3 :

The minute hand is at 2. This means it is 10 minutes after 3 o’clock. We write 10 on the right hand side.

3 : 10

We read this as three ten.

The time is 9 : 30. We read it as nine thirty.
Look at the clock. Write the time under each clock.
Ali wakes up at 8.15 in the morning.

When Ali wakes up, we say it is 8.15 am.

When Ali goes to sleep, we say it is 8.15 pm.

We use am. to talk about time just after 12 at night to just before 12 in the morning.

We use pm. to talk about time just after 12 in the noon to just before 12 at midnight.

Read the sentence and encircle the right option.

We go to school at 8 ___.
Zara eats her breakfast at 9 ___.
I go to sleep at 10 ___.

<table>
<thead>
<tr>
<th>am</th>
<th>pm</th>
</tr>
</thead>
<tbody>
<tr>
<td>am</td>
<td>pm</td>
</tr>
<tr>
<td>am</td>
<td>pm</td>
</tr>
</tbody>
</table>
Months of the year

Ali’s birthday is in April. Zara’s birthday is in July.

April and July are names of the months.

Have you seen a calendar?
It shows all the months and dates in a year.

<table>
<thead>
<tr>
<th>January</th>
<th>February</th>
<th>March</th>
<th>April</th>
</tr>
</thead>
<tbody>
<tr>
<td>S M T W T F S</td>
</tr>
<tr>
<td>1 2 3</td>
<td>1 2 3 4 5 6 7</td>
<td>1 2 3 4 5 6 7</td>
<td>1 2 3 4</td>
</tr>
<tr>
<td>4 5 6 7 8 9 10</td>
<td>8 9 10 11 12 13 14</td>
<td>8 9 10 11 12 13 14</td>
<td>5 6 7 8 9 10 11</td>
</tr>
<tr>
<td>11 12 13 14 15 16 17</td>
<td>15 16 17 18 19 20 21</td>
<td>15 16 17 18 19 20 21</td>
<td>12 13 14 15 16 17 18</td>
</tr>
<tr>
<td>25 26 27 28 29 30 31</td>
<td>29 30 31</td>
<td>29 30 31</td>
<td>26 27 28 29 30</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>May</th>
<th>June</th>
<th>July</th>
<th>August</th>
</tr>
</thead>
<tbody>
<tr>
<td>S M T W T F S</td>
</tr>
<tr>
<td>1 2 3 4 5 6 7</td>
<td>8 9 10 11 12 13 14</td>
<td>5 6 7 8 9 10 11</td>
<td>2 3 4 5 6 7 8</td>
</tr>
<tr>
<td>9 10 11 12 13 14 15</td>
<td>14 15 16 17 18 19 20</td>
<td>12 13 14 15 16 17 18</td>
<td>9 10 11 12 13 14 15</td>
</tr>
<tr>
<td>17 18 19 20 21 22 23</td>
<td>21 22 23 24 25 26 27</td>
<td>19 20 21 22 23 24 25</td>
<td>16 17 18 19 20 21 22</td>
</tr>
<tr>
<td>24 25 26 27 28 29 30</td>
<td>28 29 30</td>
<td>26 27 28 29 30</td>
<td>23 24 25 26 27 28 29</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>September</th>
<th>October</th>
<th>November</th>
<th>December</th>
</tr>
</thead>
<tbody>
<tr>
<td>S M T W T F S</td>
</tr>
<tr>
<td>1 2 3 4 5</td>
<td>6 7 8 9 10 11 12</td>
<td>1 2 3 4 5 6 7</td>
<td>1 2 3 4 5</td>
</tr>
<tr>
<td>13 14 15 16 17 18 19</td>
<td>11 12 13 14 15 16 17</td>
<td>8 9 10 11 12 13 14</td>
<td>6 7 8 9 10 11 12</td>
</tr>
<tr>
<td>20 21 22 23 24 25 26</td>
<td>18 19 20 21 22 23 24</td>
<td>15 16 17 18 19 20 21</td>
<td>13 14 15 16 17 18 19</td>
</tr>
</tbody>
</table>

Which month comes after January?

Which month comes before July?